project

٢-۶-مبدل با منبع تغذیه dc دو نیمهای٣۴
٢-٧-مبدل با q ترانزیستور و 2q دیود۵۴
٢-٨-مبدل با (١(q+ سوئیچ و دیود٨۴
٢-٩-مبدل C-Dump٠۵
٢-١٠-مبدل C-Dump با قابلیت جریان هرزگرد٢۵
٢-١١-مبدل با یک ترانزیستور مشﱰک۵۵
٢-١٢-مبدل با حداقل تعداد سوئیچ و تغذیه ورودی متغیر ۶۵
٢-١٣-مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost ٧۵
٢-۴١-مبدل با (1 .5 q) سوئیچ و دیود٩۵
۵
٢-۵١-مبدل دو مرحلهای ٠۶
فصل٣ : طراحی مدار راهانداز (DRIVER) به
روش مستقیم ٣-١-مقدمه ٣۶
٣-٢-سوئیچ و اﳌاای قدرت ۴۶
٣-٣-سنسور تعیین موقعیت و سرعت موتور ۶۶
٣-۴-آنﱰل دور و حلقه فیدبک ٧۶
فصل۴ : روش های عملی کاهش ریپل گشتاور
۴-١-بدست آوردن رابطه گشتاور از مدار معادل SRM ٧٢
۴-٢-بررسی رابطه L با موقعیت روتور θ ٧٣
۴-٣-بررسی تاثیر جریان بر L ۵٧
۴-۴-اثر ثابت گشتاور dL(θ,i)/dθ بر روی گشتاور ٧٧
۴-۵-اثر i 2 بر روی گشتاور ٧٨
۴-۶-ﲨع بندی در مورد کاهش ریپل گشتاور ٨٠
فصل۵ : طراحی مدار راهانداز (DRIVER) به روش غیرمستقیم
۵-١-مقدمه ٨٢ ۵-٢-تشخیص موقعیت روتور بدون استفاده از سنسور ٨٣ ۵-٣-آنﱰل جهت چرخش ۶٩ فصل۶ : نتیجه گیری و پیشنهادات ٩٩ نتیجه گیری پیشنهادات ١٠٢ پیوست نقشه های ﴰاتیکی سخت افزار دستگاه ١٠٣ پیوست اطلاعات نرم افزاری سیستم ١١٠ فصل٧ : مـراجـع ١٣٩ ۶
فهرست شکل ها صفحه عنوان ١-١.a-شکل :دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب. ١٧ ١-١.b-شکل :ﳕونهای دیگر با دو دندانه در هر قطب . ١٧ ١-٢.شکل : ﳓوه عملکرد موتور رلوآتانس. ١٩ ١-٣-الف.شکل :ﴰای موتور رلوآتانس با برجستگی دوگانه. ٢٠ ١-٣-ب.شکل :ﴰای موتور رلوآتانس با برجستگی واحد. ٢٠ ١-۴-١.شکل :موتور رلوآتانس از نوع روتور صفحهای. ٢٢ ١-۴-٢.شکل :موتور رلوآتانس سوئیچی چند لایه. ٢٣ ١-۵-.aشکل :روتور با فاصله x از استاتور. ۶٢ ١-۵-.bشکل :منحنی شار برحسب mmf برای x1 و x2 آه x1>x2 ۶٢ ١-۶-.aشکل :یک قطب از موتور رلوآتانس. ٢٨ ١-۶-.bشکل :منحنی اندوآتانس برحسب موقعیت روتور. ٢٨ ١-٧-١.شکل :مدار معادل موتور رلوآتانسی. ٣١ ١-٧-٢.شکل :منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه. ٣٢ ٢-١.شکل :دستهبندی مدارات مبدل. ۴٣ ٢-٢.a-شکل :مبدل پل نامتقارن. ۵٣ ٢-٢.b-شکل :شکل موجهای مبدل پل نامتقارن ـ روش اول. ۶٣ ٢-٢.c-شکل :شکل موجهای مبدل پل نامتقارن ـ روش دوم. ٣٨ ٢-٢.d-شکل :استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل نامتقارن. ٣٩ ٢-۴-.aشکل :توپولوژی R-Dump ١۴ ٢-۴-.bشکل :شکل موجهای توپولوژی R-Dump ١۴ ٢-۵-.aشکل :مبدل Bifilar ٢۴ ٢-۵-.bشکل :شکل موجهای مبدل Bifilar ٣۴ ٢-۶-.aشکل :مبدل، منبع تغذیه dc دو نیمهای. ۴۴ ٢-۶-.bشکل :شکل موجهای مبدل با منبع تغذیه دو نیمهای. ۵۴ ٢-٧.a-شکل :مبدل با q ترانزیستور و 2q دیود. ۶۴ ٧
٢-٧.b-شکل :شکل موجهای مدار فوق با روش اول.٧۴
٢-٧.c-شکل :شکل موجهای مدار فوق با روش دوم.٨۴
٢-٨-١.شکل :مبدل با (١(q+ سوئیچ در هر فاز.٩۴
٢-٨-٢.شکل :ﲠبود یافته مدار(١(q+ ترانزیستوری.٠۵
٢-٩.a-شکل :مدار مبدل C-Dump١۵
٢-٩.b-شکل :شکل موجهای مبدل C-Dump٢۵
٢-١٠-١.شکل :مبدل C-Dump با قابلیت جریان هرزگرد.۴۵
٢-١٠-٢.شکل :عملکرد مدار بدون ﳘپوشانی جریان فازها.۴۵
٢-١١.a-شکل :مبدل با یک ترانزیستور مشﱰک.۵۵
٢-١١.b-شکل :عملکرد مدار.۵۵
٢-١٢.شکل :مبدل با حداقل تعداد ترانزیستورو تغذیه ورودی متغیر. ٧۵
٢-١٣.شکل :مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost ٨۵
٢-۴١.a-شکل :مبدل با (1.5q) سوئیچ.٩۵
٢-۴١.b-شکل :عملکرد مدار.٩۵
٢-۵١.شکل :مبدل دو مرحلهای.١۶
٣-١.شکل :بلوک دیاگرام مدار آنﱰل موتور.٣۶
٣-٢-١.شکل :مدار ساده هر فاز.۴۶
٣-٢-٢.شکل :مدار درایو ترانزیستورهای قدرت.۵۶
٣-٣-١.شکل :مدار معادل فتواینﱰاپﱰ.۶۶
٣-٣-٢.شکل :مدار آامل سنسورها.۶۶
٣-٣-٣.شکل :شکل موجهای ناشی از سنسورها.٧۶
٣-۴-١.شکل :پالسهای PWM٨۶
٣-۴-٢.شکل :مدار سرعت موتور.٨۶
٣-۴-٣.شکل :مدار آنﱰل PI٩۶
٣-۴-۴.شکل IC-TL494:٧٠
۴-١.شکل :مدار معادل موتور رلوآتانسی.٧٢
۴-٢-١.شکل :تغییرات اندوکتانس با موقعیت روتور.۴٧
۴-٢-٢.شکل :پایین شکل،روتوراصلاح شده درمقایسه باروتور معمولی. ۵٧
٨
۴-٣.شکل :تغییرات اندوکتانس با جریان بر حسب زاویه. ۶٧ ۴-۴.شکل :استفاده از دیودهای هرزگرد برای ﲣلیه سریع تر جریان ٧٨ سیم پیچ. ۴-۵.شکل :کنﱰل جریان برای کاهش ریپل گشتاور. ٨٠ ۵-١-١.شکل :شفت انکدر و سه عدد سنسور برای تشخیص موقعیت روتور ٨٢ دریک موتور سه فاز ۴/۶. ۵-٢-١.شکل :شکل جریان سیمپیچ در استاتور. ۵٨ ۵-٢-٢.شکل :مدار مبدل ۶ سوئیچه با سه عدد مقاومت sense جریان. ۶٨ ۵-٢-٣.شکل :مقطع عرضی یک موتور رلوکتانس. ٨٧ ۵-٢-۴.شکل :پالسهای اعمال شده به یک فازﳕونه و جریان حاصله ٨٨ در ﳘان فاز. ۵-٢-۵.شکل :پالسهای اعمال شده به سه فاز و جریان حاصله در ٨٩ فازها. ۵-٢-۶.شکل :فاز A در حالت ﳘپوشانی کامل. ٩٢ ۵-٢-٧.شکل :فاز A در حالت عدم ﳘپوشانی کامل. ٩٢ ۵-٢-٨.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۴٩ جریاای حاصله. ۵-٢-٩.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۵٩ جریاای حاصله بعد از تقویت. ۵-٢-١٠.شکل :جریاای حاصل از پالسهای تشخیص هرسه فاز به ۵٩ صورت مالتی پلکس شده. ۵-٢-١١.شکل :پالسهای تشخیص وفرمان دو فاز متوالی. ۶٩ ۵-٣-١.شکل :ترتیب فرمان ها برای حرکت راست گرد یا چپ گرد. ٩٧ ۶-١.a-شکل :منحنی جریان فازها. ٩٩ ۶-١.b-شکل :منحنی گشتاور قبل از آنﱰل جریان. ٩٩ ۶-١.c-شکل :منحنی گشتاور باآنﱰل جریان. ٩٩ ۶-٢.شکل :منحنی گشتاور برحسب سرعت موتور. ١٠٠ ۶-٣.شکل :ارتباط میکرو با A/D و آنالوگ سوئیچ. ١٠٣ ۶-۴.شکل :مدار تغذیه رگوله شده برای درایور. ۴١٠ ٩
۶-۵.شکل :مدار تولید کننده PWM بر اساس سرعت.۵١٠
۶-۶.شکل :مدار مبدل۶ سوئیچه به ﳘراه مدار ﳏدود کننده جریان. ۶١٠
۶-٧.شکل :یک فاز از مدار مبدل به ﳘراه درایور MOSFET ها . ١٠٧
۶-٨.شکل :مدار راه انداز و مدار مبدل به ﳘراه موتور. ١٠٨
۶-٩.شکل :استاتور موتور ماشین لباسشویی.١٠٩
۶-١٠.شکل :روتور موتور ماشین لباسشویی.١٠٩
١٠
چکیده
ویژگیهای جذاب و مفید موتورهای رلوکتانس سوئیچی باعث افزایش میزان کاربرد آا در صنعت شده است که می توان به مواردی از قبیل هزینه پایین تولید، قابلیت کار در سرعت های ﳐتلف، راندمان بالا و دوام زیاد اشاره کرد. پیشرفت الکﱰونیک قدرت و رشد چشمگیر صنعت نیمه هادی تأثیر فراوانی بر طراحی و ساخت راه اندازهای موتورهای رلوکتانسی بر جای اده است. به این
صورت که با در دسﱰس قرار گرفﱳ مدارهای ﳎتمع ﳐتلف و کاهش
قیمت آا، این ادوات در ساخت راه اندازهای موتورهای رلوکتانسی مورد استفاده قرار گرفته و روز به روز باعث هوﴰندترشدن این راه اندازها گردیده اند.
به طورکلی دو روش برای راه اندازی موتورهای رلوکتانسی وجود
دارد :
١- روشهای مبتنی بر داشﱳ سنسور ٢- روشهای بدون سنسور روشهای بدون سنسور به علت حذف سنسورها و ﳘچنین اتصالات
مربوطه در صنعت دارای طرفداران بیشﱰی می باشد که از عمده ترین دلایل آن می توان به خراب شدن سنسورها به مرور زمان و نیاز به تنظیم سنسورها اشاره کرد. روشهای بدون سنسور به علت پیشرفت روزافزون علم الکﱰونیک و کنﱰل رشد چشمگیری پیدا کرده اند و با استفاده از مفاهیم ﳐتلف تنوع زیادی یافته اند. در فصل یک، ساختار موتورهای رلوکتانسی مورد بررسی قرار گرفته
است و در فصل دوم انواع مدارات مبدل ارائه شده و در فصل سوم راه اندازی با استفاده از سنسور گفته شده است و در فصل
چهارم رابطه ریاضی گشتاور مورد بررسی واقع شده و روش های عملی جهت کاهش ریپل گشتاور ارائه شده است و در فصل پنجم جزئیات روشی نوین در راه اندازی بدون سنسور موتورهای رلوکتانس سوئیچ شونده را بیان می کنیم.
١١
ﳘچنین در ضمائم، نقشه های ﴰاتیک سخت افزار و اطلاعات نرم افزاری مدار راه انداز آمده است.
١٢
مقدمه
با توجه به پیشرفت روز افزون صنایع نیمه هادی، موتورهای رلوکتانسی جایگاه ویژه ای در عرصه های ﳐتلف صنعت پیدا کرده اند. از ﲨله دلایل این امر می توان به مواردی از قبیل سادگی ساختمان این نوع موتورها، راندمان بالای آا نسبت به سایر موتورها و عدم نیاز به نگهداری اشاره کرد.
موتورهای رلوکتانسی بر خلاف اغلب موتورهای الکﱰیکی نیاز به یک سیستم راه انداز دارند، این سیستم راه- انداز به طور کلی به دو روش زیر قابل طراحی می باشد :
با استفاده از سنسور
بدون استفاده از سنسور
روشهای بدون سنسور به علت نداشﱳ سنسور و ﳘچنین اتصالات مربوطه در صنعت دارای طرفداران بیشﱰی می باشد که از عمده ترین دلایل آن می توان به توانایی کارکرد موتور در شرایط نامناسب ( از قبیل ﳏیطهای بسیار گرم و پر گرد و غبار ) و
عدم نیاز به تنظیم و نگهداری مداوم سنسور اشاره کرد.
روش ارائه شده مبتنی بر اعمال پالسهای شناسایی به موتور هم در مرحله ایستا و هم در مرحله چرخش می- باشد. عمده ترین مزایای این روش را نسبت به سایر روشهای مرسوم می توان در
موارد زیر ذکر کرد:
١- توانایی راه اندازی موتورهایی در گسﱰه توان چند ده وات
تا چندین کیلو وات.
٢- توانایی راه اندازی موتور با سطح ولتاژ ﳐتلف.
٣- این روش علاوه بر اینکه توانایی راه اندازی از حالت
ایستا با گشتاور زیاد را داراست، قادر است عملیات کنﱰل موتور را در سرعتهای ﳐتلف طبق تنظیمات اﳒام دهد.
۴- ریپل گشتاور به میزان قابل توجهی کاهش یافته است.
١٣
عملکرد موتور را طبق این روش می توان به مراحل زیر تقسیم
ﳕود :
١- مرحله تشخیص فاز مناسب در حالت ایستا.
در این مرحله با اعمال پالس شناسایی به هریک از فازها و ثبت نتایج حاصله و ﲢلیل آا مناسبﱰین فاز جهت دریافت اولین فرمان انتخاب می شود.
٢- مرحله اول چرخش با داشﱳ قابلیت تنظیم سرعت توسط PWM
در این مرحله الگوریتمی به صورت پیاپی و حلقه وار تکرار می شود تا موتور به میزان تعیین شده که می بایست در ابتدای کار تنظیم شود برسد.
١۴
فصل اول:
ساختمان موتورهای رلوآتانسی
١۵
١-١- مقدمه
راهاندازهای موتورهای رلوآتانسی سوئچ شونده، (SRM) برای آاربردهای صنعتی خواستگاه جدیدی میباشند. آلید فهمیدن هرماشینی فهمیدن گشتاور آن میباشد آه از اصول اولیه منتج میشود. عملکرد ماشین و خصوصیات برجسته آن از روابط گشتاور بدست می آیند. در این فصل ساختمان موتورهای رلوآتانسی را از نظر میگذرانیم، در دهه اخیر ﲢقیقات و مطالعات بر روی این دسته از موتورها بسیار افزایش یافته و به نتایج ارزندهای هم رسیده است بطور آه امروزه آا جزء ماشینهای الکﱰیکی مطرح در سطح جهان میباشند. از سال ١٩۶٩ یک موتور با رلوآتانس متغیر برای آاربردهای با سرعت متغیر ارائه شد آه منشأ آن به سال ١٨۴٢ برمیگردد، گرچه این ماشین جزء ماشینهای سنکرون میباشد اما خصوصیات جدیدی را دارد. ﳘانند موتورهای DC سیمپیچهایی بر روی استاتور این موتورها وجود دارد اما روتور آا هیچ مگنت یا سیمپیچ ندارد. روتور و استاتور قطبهای برجستهای دارند، این ماشین در شکل a)١-١) نشان داده شده است. و یک مدل تغییر یافته با دو دندانه در هر قطب نیز در شکل b)١-١)
آورده شده.
١۶

شکل (١-١) : (a) دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب.
(b) ﳕونهای دیگر با دو دندانه در هر قطب
هرگاه قطبهای مقابل هم در استاتور ﲢریک شوند روتور (align)
ﳘردیف با آن میشود. در یک مدار مغناطیسی، عضو چرخشی (روتور)
میخواهد به موقعیتی برود آه آمﱰین رلوآتانس یا بیشﱰین اندوآتانس حاصل گردد.[16] وقتی دو قطب روتور ﳘراستا با دو قطب ﲢریک شده استاتور میشوند دو دسته دیگر از قطبهای روتور نسبت به دسته دیگری از قطبهای استاتور غیرهمراستا هستند، پس
١٧
این دو قطب استاتور ﲢریک میشوند تا قطبهای روتور را ﳘراستا
آنند، بهﳘین ترتیب با سوئیچ آردن متوالی جریان به داخل
سیمپیچهای قطبهای استاتور، روتور میچرخد، با حرآت روتور، توان و گشتاور ایجاد میشود.
این شامل سوئیچ آردن جریان در داخل سیمپیچهای استاتور است آه موجب رلوآتانس متغیر میشود، بنابراین یک چنین راهانداز موتور با سرعت متغیر بهعنوان راهانداز موتور رلوآتانسی سوئیچ شونده نامیده میشود.
١-٢- عملکرد اولیه موتور رلوآتانس
توجه آنید آه قطبهای r1 و r′1 از روتور و قطبهای C و C′ از استاتور با هم ﳘراستا هستند. اعمال یک جریان به فاز a با جهت نشان داده شده در شکل -a)٢-١) باعث ایجاد یک شار در قطبهای a و a′ از استاتور و قطبهای r2 و r′2 از روتور میگردد آه باعث آشیدن قطبهای r2 و r′2 از روتور به ﲰت قطبهای a و a′
از استاتور میشود. بهترتیب وقتی آه آا ﳘراستا هستند جریان فاز a قطع م یشود و موقعیت متناظر در شکل -b)٢-١) نشان داده شده است. حال فاز b ﲢریک میشود تا r1 و r′1 را در جهت عقربههای ساعت به ﲰت b و b′ بکشد، بطور مشابه ﲢریک فازC باعث ﳘراستا شدن C و C′ با r2 و r′2 میگردد، بنابر این با سه بار ﲢریک متوالی روتور °٩٠ میچرخد.[8]
١٨

شکل(٢-١) : ﳓوه عملکرد موتور رلوآتانس
١-٣- انواع موتورهای رلوآتانس متغیر
موتورهای رلوآتانس متغیر به دو دسته تقسیم میشوند:
الف) موتورهای رلوآتانس متغیر با برجستگی دوگانه ب) موتورهای رلوآتانس متغیر با برجستگی واحد[38]
در روتور هر دو نوع از موتورهای مذآور هیچگونه سیمپیچ یا مغناطیس دائم وجود ندارد و تنها منبع ﲢریک سیمپیچ استاتور میباشد. استاتور و روتور از مواد مغناطیسی با قابلیت نفوذپذیری مغناطیسی بالا ساخته میشوند در شکل (٣-١) (الف) و (ب) به ترتیب ﴰاهایی از یک موتور رلوآتانس با برجستگی دو گانه و دیگری با برجستگی واحد نشان داده شده است.[17]
١٩

شکل(٣-١) : (الف) ﴰای موتور رلوآتانس با برجستگی دوگانه
(ب) ﴰای موتور رلوآتانس با برجستگی واحد
١-۴- دسته بندی موتورهای رلوآتانسی از ﳊاظ ساختار
موتورهای رلوآتانس متغیر با برجستگی دوگانه از ﳊاظ ساختاری
به سه دسته آلی تقسیم میشوند آه عبارتند از : ١- موتورهای استوانهای با قطب برجسته مضاعف ٢- موتورهای صفحهای ٣- موتورهای چند لایهای آه این تقسیمبندی بنا به شکل ظاهری موتورها صورت گرفته
است.[37] - موتورهای رلوآتانس سوئیچی استوانهای با قطب برجسته
مضاعف : این موتورها دارای قطبهای برجسته بر روی استاتور و روتور
میباشند و از اینرو به آن قطب برجسته مضاعف میگویند. ﳕای
ظاهری دو مدل از آا در شکل (١-١) آمده است. سیمپیچهای آن
بر روی استاتور بسته شده و هیچگونه سیمپیچی روی روتور آن
وجود ندارد، بسته به جایگاه و موقعیت روتور جریان را در
٢٠
سیمپیچهای استاتور وصل میﳕاییم. حال ﲤایل به فراهم آوردن مسیری آم رلوآتانس در مدار مغناطیسی روتور باعث ایجاد گشتاور میشود.
- موتورهای رلوآتانس سوئیچی صفحهای :
آاربرد موتورهای صفحهای آه با جریان مستقیم آار میآنند از
نوع دیگر آا بیشﱰ است. برای چنین موتورهایی روتورهای
صفحهای بکار گرفته شده آه در آا اندازه فیزیکی از عوامل اصلی ﳏسوب میشود. لفظ »روتور صفحهای« ﲞاطر شکل فیزیکی ساختار روتور آن میباشد. چنین موتورهایی میتوانند دارای قطر بسیار بزرگ ولی طول آوچک یا بالعکس باشند و در ﳏدوده ما بین آا نیز ساخته میشوند و لذا چنین سیستمی دارای تنوع بسیار گسﱰدهای در اندازه و شکل ظاهری میباشد و حتی میتوان آن را در مکانهایی آه از ﳊاظ فضا بسیار ﳏدود میباشند بکار برد .[13]
یک مدل بسیار ساده از این موتور در شکل (١-۴-١) آمده است. در این شکل یک روتور ضخیم آه در داخل قطبهای استاتور؛ جهت ایجاد
گشتاور بیشﱰ در حرآت است را ملاحظه میآنید. چنانچه ملاحظه میگردد ساختار این سیستم بسیار ساده است.[5]
٢١

شکل(١-۴-١) : موتور رلوآتانس از نوع روتور صفحهای
- موتورهای رلوآتانس سوئیچی چند لایه :
ﳕای ظاهری این موتور در شکل (٢-۴-١) نشان داده شده است.
ﳘانطور آه در شکل نشان داده شده است این موتور از چند لایه ﳎزای مستقل تشکیل شده است آه هرقسمت میتواند معرف یک فاز موتور بوده و القای متقابل بین سیمپیچ فازها به حداقل ﳑکن رسیده است. در این ساختار ﳏدودیت افزایش قطبهای استاتور به سبب آمبود فضای سیمبندی مرتفع گشته و امکان دسﱰسی به قطبهای بیشﱰ و به تبع آن گشتاور بالاتر در موتورهای با ابعاد آوچک میسر میگردد .[11]
از آﳒا آه مسیر شارهای هر فاز ﳎزا بوده، میتوان از روی شار جاری در هر فاز به موقعیت روتور آن نسبت به استاتور پی برد و به سهولت در حذف سنسورهای موقعیت گام برداشت.[33]
٢٢

شکل(٢-۴-١) : موتور رلوآتانس سوئیچی چند لایه
- موتورهای رلوآتانس متغیر با برجستگی واحد :
ﴰای آلی این موتورها در شکل (ب ٣-١) نشان داده شده است.
استاتور اینگونه موتورها مشابه موتورهای AC میباشد ولی روتور آا طوری ساخته شده آه گشتاور تولید شده از تغییرات رلوآتانس بوجود میآید.
١-۵- ایجاد گشتاور در یک موتور رلوآتانس سوئیچی (روابط و
نتایج)
آلید فهمیدن هر ماشینی فهمیدن گشتاور آن میباشد آه از
اصول اولیه منتج میشود. روابط گشتاور نیاز به یک رابطه بین شار یا اندوآتانس با موقعیت روتور دارد، به منظور اختصار
٢٣
برای بیان تئوری پایه فقط عملکرد غیراشباع مورد بررسی قرار میگیرد.
ﳘانطور آه در شکل (۵-١) نشان داده شده سیمپیچ دارای N دور میباشد و وقتی آه با یک جریان i ﲢریک میشود سیمپیچ شار φ را ایجاد میآند. با افزایش جریان ﲢریک آرمیچر به ﲰت یوک آه ثابت است حرآت میآند. برای دو مقدار فاصله هوایی x1 و x2 شار برحسب mmf رسم شده است بهطوری آه x1>x2 میباشد. منحنی شار برحسب mmf برای x1 خطی میباشد بهخاطر اینکه رلوآتانس فاصله هوایی غالب میباشد. این امر باعث آاهش شار در مدار مغناطیسی میشود، انرژی الکﱰیکی ورودی بهصورت زیر نوشته میشود.
we  ∫eidt ∫idt ddNtφ  ∫Nidφ ∫Fdφ

در اینجا e، emf القایی بوده و F ، mmf میباشد، این انرژی الکﱰیکی ورودی، we، مساوی با ﳎموع انرژی ذخیره شده در سیم پیچ، wf، و انرژی تبدیل شده به آار مکانیکی، wm، میباشد.
we = wf + wm
وقتی آار مکانیکیای اﳒام ﳕیشود، مانند ﳊظهای آه آرمیچر از موقعیت x1 شروع میآند، انرژی ذخیره شده در میدان مغناطیسی، برابر انرژی الکﱰیکی ورودی میباشد، این منطق با مساحت OBEO
در شکل (۵-١) میباشد متمم این انرژی ذخیره شده در میدان
مغناطیسی، coenergy نامیده میشود، با مساحت OBAO در شکل (۵-٢
) داده میشود، و بهصورت ریاضی با رابطه ∫φdF داده میشود،
بطور مشابه در موقعیت x2 برای آرمیچر، اثری ذخیره شده در
میدان مغناطیسی منطبق با مساحت OCDO بوده و coenergy با
مساحت OCAO داده میشود برای تغییرات افزایش داریم dwe = dwf + dwm
٢۴
برای یک ﲢریک ثابت F1 آه با نقطه آار A در شکل (۵-١) داده میشود، انرژیهای ﳐتلف بهصورت زیر بدست میآیند :
(BCDEB) مساحت dwe  ∫φφ12 F1dφ  F1 φ2 −φ1 =
(OBEO) مساحت- (OCDO) مساحت x  x = − dw f 2 x  x dw f  dw f 1 با استفاده از معادلات فوق، انرژی مکانیکی بهصورت زیر بدست میآید :
(OBCO) مساحت dwm =dwe = dwf =
آه این مساحت بین دو منحنی برای یک mmf داده شده میباشد، در مورد یک ماشین با حرآت دوار انرژی مکانیکی افزایشی برحسب گشتاور الکﱰومغناطیسی و تغییرات در موقیعت روتور بهصورت زیر نوشته میشود.
dwe = Tedθ
بنابراین گشتاور الکﱰومغناطیسی بهصورت زیر بدست میآید :
T  dwm
edθ

برای حالتی آه ﲢریک ثابت است (وقتی آه mmf ثابت میباشد)
آار مکانیکی اﳒام شده برابر نرخ تغییرات coenergy میباشد، w′f،
آه فقط متمم انرژی ذخیره شده در میدان میباشد، بنابراین آار
مکانیکی اﳒام شده بهصورت زیر نوشته میشود :
dwm = dw′f
بهطوری آه :
we′  ∫φdF  ∫φd (Ni)  ∫Nφdi ∫λ(θ,i)di ∫L(θ,i)idi
در اینجا، اندوآتانس، L، و اتصال شار، λ ، توابعی از
موقعیت روتور و جریان میباشند، این تغییرات در coenergy بین
دو موقعیت θ1 و θ2 روتور اتفاق میافتند.
٢۵
dw′f (i,θ)  dw′f  dw T  m i  cons tan t dθ dθ dθ e اگر اندوآتانس بهصورت خطی با موقعیت روتور تغییر آند آه
در عمل عموماً این گونه نیست[6]، گشتاور بهصورت زیر میتواند نوشته شود :
i2 . dL(θ,i)  T 2 dθ e در رابطه اخیر dL(θ,i) ثابت گشتاور نامیده شده و واحد آن dθ N.m
A2 میباشد، باید تأآید شود آه این یک ثابت نیست و مرتباً

تغییر میآند و این بیان میآند آه SRM یک مدار معادل برای شرایط آار دائمی ندارد.

شکل(۵-١) : (a) روتور با فاصله x از استاتور (b) منحنی شار برحسب mmf برای x1 و x2 آه x1>x2
٢۶
- از رابطهگشتاور میتوان نتایج زیر را بدست آورد
١- گشتاور با توان دوم جریان متناسب است، بنابراین جریان میتواند در یک جهت برقرار شود تا گشتاور در یک جهت ایجاد
شود. بنابراین فقط با یک سوئیچ میتوان جریان را در سیمپیچ برقرار ﳕود، این سبب آاهش تعداد سوئیچهای قدرت و آاهش هزینه میشود.
٢- ثابت گشتاور با شیب اندوآتانس برحسب موقعیت روتور داده میشود. اینطور فهمیدهاند آه اندوآتانس سیمپیچ استاتور تابعی
از موقعیت روتور و جریان میباشد و بنابراین آن را غیرخطی میسازد.
٣- بهخاطر تناسب گشتاور با توان دوم جریان، این خصوصیت شبیه موتورهای DC سری میباشد، بنابراین SRM دارای گشتاور
راهاندازی خوب میباشد.
۴- عملکرد ژنراتوری با برقراری جریان در یک جهت هنگامیآه
شیب اندوآتانس منفی است، امکانپذیر میباشد.
۵- تغییر جهت چرخش با تغییر ترتیب فرمان سیمپیچهای استاتور امکانپذیر میباشد آه این یک عمل ساده است.
۶- گشتاور و سرعت هر دو به وسیله مدار مبدل (Converter) آنﱰل میشوند.
٧- این ماشین یک مدار مبدل آنﱰل شونده نیاز دارد و با تغذیه سهفاز برقشهر بهطور مستقیم ﳕ یتواند آار آند.
٨- تزویج در بین سیمپیچهای استاتور بسیار آم بوده و در بسیاری از آاربردها قابل صرفنظر میباشد. بنابراین هر فاز از این موتور میتواند بطور مستقل از فازهای دیگر عمل آند.
٩- بهخاطر اینکه جریان فقط لازم است در یک جهت در سیمپیچها جاری شود، ﲤام مبدﳍای قدرت دارای یک سوئیچ بصورت سری با سیم پیچ هستند بنابراین هیچگاه خطای shoot-through رخ ﳕیدهد.
٢٧
١-۶- رابطه بین موقعیت روتور و اندوآتانس سیمپیچ استاتور
برای یک جریان ثابت، اندوآتانس برحسب موقعیت روتور در شکل (۶-١) نشان داده شده است. این منحنی با صرفنظر از اثرات لبهای و اشباع سیمپیچ ترسیم شده است.

شکل(۶-١) : (a) یک قطب از موتور رلوآتانس (b) منحنی اندوآتانس برحسب
موقعیت روتور
نواحی ﳐتلف بر روی شکل (۶-١) را بهصورت زیر میتوان ﲢلیل آرد.
١ - φ1 - و φ4 - φ5 فازهای استاتور و روتور هیچگونه ﳘپوشانی با ﳘدیگر ندارند و شار عبوری به وسیله مسیر فاصله هوایی تعیین میشود، بنابراین اندوآتانس مینیمم شده و مقداری
٢٨
تقریباً ثابت باقی میماند بنابراین، این ناحیه باعث ایجاد گشتاور ﳕیشود، اندوآتانس در این ناحیه، اندوآتانس غیرﳘراستا
Lu(unaligned) نامیده میشود.
٢φ1- φ2 - در این ناحیه قطبها با هم ﳘپوشانی پیدا آردهاند بنابراین شار بطور عمده از ﳌینیتهای استاتور و روتور عبور
میآند، با تغییر موقعیت روتور اندوآتانس افزایش مییابد و به آن یک شیب مثبت میدهد، جریان تزریق شده به داخل سیمپیچ در این ناحیه باعث ایجاد یک گشتاور مثبت میشود، این ناحیه با ﳘپوشانی آامل قطبهای استاتور و روتور خاﲤه پیدا میآند.
٣φ2- φ3 - در این ناحیه حرآت روتور باعث تغییر ﳘپوشانی آامل فاز استاتور و روتور ﳕیشود و بنابراین تغییری در مسیر شار آه اآنون از طریق ﳌینیتها میباشد ایجاد ﳕیشود و اندوآتانس در مقدار حداآثر خود ثابت باقی میماند. این
اندوآتانس، اندوآتانس حالت ﳘپوشانی آامل La(aligned) نامیده میشود، از آﳒا آه تغییری در اندوآتانس ایجاد ﳕیشود بنابراین گشتاور تولید شده در این ناحیه صفر میباشد، هر چند جریان جاری در سیمپیچ غیرصفر باشد با دانسﱳ این حقیقت، این زمان ﲠﱰین زمان برای خاموش آردن فاز میباشد زیرا جریان برگشتی ناشی از انرژی ذخیره شده در فاز استاتور باعث ایجاد گشتاور منفی ﳔواهد شد.
۴φ3- φ4 - در این ناحیه قطب روتور در حال دور شدن از موقعیت ﳘپوشانی آامل فاز استاتور و روتور میباشد. این ناحیه خیلی شبیه ناحیه φ1- φ2 میباشد اما در این ناحیه با افزایش موقیت روتور، اندوآتانس آاهش مییابد و باعث تولید یک شیب منفی میگردد، عملکرد موتور در این ناحیه باعث ایجاد گشتاور
منفی میگردد. به خاطر اشباع جریان عبوری از سیمپیچ، رسیدن به منحنی
ایدهآل شکل فوق امکانپذیر ﳕیباشد، اشباع جریان باعث ﲬیده
٢٩ شدن منحنی به ﲰت بالا میشود و شیب را آاهش میدهد، بنابراین ثابت گشتاور آاهش مییابد. پس اشباع جریان باعث آاهش یافﱳ گشتاور و توان خروجی میشود.[14]
١-٧- مدار معادل موتور رلوآتانسی
مدار معادل اولیه یک موتور رلوآتانسی با صرفنظر آردن از اثر تزویج بین سیمپیچها بصورت زیر خواهد بود. ولتاژ اعمال شده به سیمپیچی فاز برابر با ﳎموع افت ولتاژ مقاومتی و نرخ تغییرات شار عبوری میباشد.
dλ(θ,i) V  Rs i  dt RS مقاومت بر هر فاز بوده و λ شار عبوری میباشد.
λ = L(θ,i) i
dL(θ,i)  dθ i di RSiL(θ,i) dL(θ , i )i V  RS i  dθ dt dt dt dL(θ,i) iw  di i  L(θ,i) V  R dθ m dt S در رابطه اخیر میتوان بهجای dL(θ,i) iwm ، e ، یعنی emf القا dθ شده را جایگذاری آرد. dL(θ,i) و dL(θ,i) Kb  Kbwmi e  iwm dθ dθ V  RS i  L(θ,i) dtdi  e

٣٠

شکل(١-٧-١) : مدار معادل موتور رلوآتانسی
با فرض ثابت بودن جریان در یک پریود داریم :
dL V  R i iw m dθ S V i  dL ( w (R m dθ S معادله اخیر بیانگر آن است آه جریان با سرعت نسبت عکس دارد و چون گشتاور با ﳎذور جریان نسبت دارد بنابراین گشتاور با ﳎذور سرعت نسبت عکس خواهد داشت.
Tα 1

w2m
این مطلب رفتار گشتاور سرعت یک موتور DC سری را تداعی میآند.[10]
٣١

شکل(٢-٧-١) : منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه
در موتورهای رلوآتانسی آه حرآت ابتدایی را خود آغاز
میآنند، تیغههای روتور باید با تیغههای استاتور مربوط به خودش ﳘپوشانی داشته باشد. تا در هر موقعیتی بر روی روتور آن گشتاور وجود داشته باشد.
ترآیبات ﳐتلف از تعداد قطبها (Nr , Ns) آه بهترتیب قطبهای
استاتور و روتور میباشند. ذیلا آورده شده است. 4 Nr = 6 Ns = برای موتور 3 فازه
6 = Nr 8 Ns = برای موتور 4 فازه
4 = Nr Ns = 10 برای موتور 5 فازه
البته ترآیبات دیگری نیز وجود دارد و تفاوت آا در این
است آه در برخی از جایگاههای روتور ﳑکن است گشتاوری تولید نگردد.[9]
٣٢
فصل دوم:
مدارات راه انداز (DRIVER)
٣٣
٢-١- پیکربندی مدارات مبدل
در موتورهای رلوآتانسی، تزویج بسیار ناچیز است، این امر سبب عدم وابستگی به دیگر فازها در آنﱰل هر فاز و تولید گشتاور میشود. درحالیآه این خصوصیت یک برتری ﳏسوب میشود، نداشﱳ تزویچ نیاز به عملکرد درست با انرژی مغناطیسی ذخیره شده دارد. در هنگام خاموش شدن فاز باید مسیری برای ﲣلیه انرژی ذخیره شده بوجود آورد، در غیراینصورت این انرژی سبب ایجاد ولتاژ بیش از حد خواهد شد و به سوئیچهای نیمه هادی صدمه خواهد رساند. این انرژی میتواند بهصورت آزاد بهحرآت درآید، ﲞشی از آن به انرژی الکﱰیکی/ مکانیکی تبدیل شده و ﲞشی دیگر از آن در سیمپیچهای ماشین تلف میشود[15]، روش دیگر بازگرداندن آن بر روی منبع ولتاژ DC میباشد.
دستهبندی مدارات مبدل بهصورت q ، q+1 ، 1. 5 q و 2 q سوئیچ در هر فاز و مبدل قدرت دو مرحلهای است آه q تعداد فازهای ماشین میباشد.[20]
این دستهبندی در شکل (١-٢) نشان داده شده است.

شکل(١-٢) : دستهبندی مدارات مبدل
٣۴
٢-٢- مبدل پل نامتقارن شکل -a)٢-٢) مبدل پل نامتقارن را با درنظر گرفﱳ یک فاز
SRM نشان میدهد.[3] بقیه فازها نیز بهطور مشابه متصل
میشوند. با روشن شدن ترانزیستورهای T1و T2 جریان در فاز A
برقرار میشود، اگر جریان بالاتر از حد تعیین شده برسد، T1و T2
خاموش میشوند. انرژی ذخیره شده در سیمپیچ فاز A موتور جریان را در ﳘان جهت حفظ میآند تا اینکه ﲣلیه شود، بنابراین دیودهای D1و D2 بهصورت مستقیک بایاس شده و باعث شارژ شدن دوباره منبع میشوند، این امر سبب آاهش سریع جریان و رسیدن
آن به زیر حد تعیین شده میشود این عملکرد با شکل موجهای شکل
-b)٢-٢) تشریح شده است. باید توجه داشت آه یک جریان با اندازه IP در هنگام عملکرد موتوری آه شیب اندوآتانس مثبت است مورد نیاز میباشد. در اینجا جریان فاز A ، ia، بهوسیله یک فیدبک جریان و مقایسه با ia ، در حدود ia حفظ میشود، ∆i
میزان اختلاف با جریان تعیین شده میباشد.

شکل(-a٢-٢) : مبدل پل نامتقارن
٣۵

شکل(-b٢-٢) : شکل موجهای مبدل پل نامتقارن ـ روش اول
وقتی اختلاف جریان ia و ia به اندازه -∆i شود، ترانزیستورهای
T1 و T2 بطور ﳘزمان خاموش میشوند در این هنگام دیودهای D1 و
D2 باعث هدایت جریان به منبع ولتاژ DC میشوند، توجه آنید آه
ولتاژ فاز A در این ﳊظه منفی و به اندازه منبع ، Vdc،
میباشد، روش آنﱰلی فوق (روش١) از آﳒا آه ریپلهای بیشﱰی به خازن تغذیه اعمال میآند باعث آوتاه شدن عمر این خازن و
افزایش تلفات سوئیچینگ در ترانزیستورهای قدرت میشود. برای
ﲠﱰ شدن این مسأله میتوان از روش سوئیچینگ متناوب استفاده
آرد.[4] انرژی ذخیره شده در فاز A میتواند بهطور مؤثر در داخل
خودش استفاده شود، این آار با خاموش آردن T2 به تنهایی (روش
٣۶
دوم) امکانپذیر است. در این مورد جریان در داخل T1 و فاز A
و D1 جاری میشود، اگر از افت ولتاژ بر روی ترانزیستورو دیود صرفنظر آنیم، ولتاژ بر روی فاز A صفر خواهد شد. شکل ( -C٢-٢ ) در این روش (روش دوم) نسبت به روش اول زمان بیشﱰی طول میآشد تا جریان از IP + ∆I به IP-∆I برسد. این امر سبب آاهش فرآانس سوئیچینگ و بنابراین آاهش تلفات سوئیچینگ خواهد شد.
در روش دوم وقتی فاز میخواهد آاملا خاموش شود یعنی وقتی ia
صفر است، آنگاه T1 و T2 ﳘزمان خاموش میشوند در این فاصله ولتاژ دو سر سیمپیچ -Vdc خواهد شد و ﳘچنین D1 و D2 هدایت میآنند تا اینکه ia صفر شود، ولتاژ روی T2 در حین خاموشی و هنگامیآه T1 روشن است، مساوی ولتاژ منبع، Vdc ، میباشد بنابراین ولتاژ ترانزیستورها و دیودها باید در حدود ولتاژ منبع تغذیه باشد. در روش دوم جریان برگشتی فازها دیرتر از روش اول صفر میشود ﳘچنین در روش دوم انرژی ذخیره شده به انرژی مکانیکی مفید تبدیل میشود، این روش برای آنﱰل جریان استفاده میشود ولی هنگامی آه جریان باید سریعاً خاموش شود، دشارژ در داخل منبع مفید خواهد بود، یعنی زمانی آه شیب اندوآتانس صفر میشود و بعد از آن منفی خواهد شد، در این زمان دیرتر خاموش شدن فاز باعث ایجاد گشتاور منفی و از دست رفﱳ انرژی خواهد شد.
توجه آنید آه این مدار مبدل به ازای هر فاز دو ترانزیستور و دو دیود نیاز دارد.
٣٧

شکل(-c٢-٢) : شکل موجهای مبدل پل نامتقارن ـ روش دوم
ﲠرهبرداری از ادوات قدرت در مبدل نامتقارن ضعیف میباشد.
میتوان زماای سوئیچ آا را افزایش داد. این آار با آاهش
تعداد ترانزیستورهای قدرت و استفاده از SCR ﳑکن خواهد شد.[7]
ﳘانطور آه در شکل -d)٢-٢) دیده میشود تعداد فازها باید
زوج باشد. SCR ها برای هدایت جریان به فاز مناسب استفاده
میشوند و برای آنﱰل استفاده ﳕیشوند. با این وجود استفاده از
SCR نیاز به مدارات جانبی داشته آه باعث افزایش تعداد
قطعات، هزینه و ابعاد مدار راهانداز خواهد شد.
تعداد دیودها به یکعدد در هر فاز تقلیل یافته است. باید توجه داشت آه فازهای غیرمتوالی در یک گروه با هم قرار میگیرند و با یک دسته از ترانزیستورها ﲢریک میشوند. این آار
٣٨
سبب میشود آه یک فاز بتواند در موقع لزوم به سرعت خاموش شود و جریانش به صفر برسد. برای ﲢریک فاز A، ترانزیستورهای T1 و
T2 و تریستور S1 روشن میشوند، اگر جریان به مقدار تعیین شده برسد T1 خاموش میشود و جریان از طریق فاز A و ترانزیستور T2
S1 و D2 برقرار میشود، در این هنگام ولتاژ دو سر فاز A در
صورت ایدهآل در نظر گرفﱳ قطعات صفر خواهد بود در این روش انرژی ذخیره شده در اندوآتانس ماشین به انرژی مکانیکی تبدیل شده و جریان فاز آاهش مییابد، هنگامیآه جریان فاز باید آاملا خاموش شود. T1 و T2 ﳘزمان خاموش میشوند آه باعث روشن شدن D1
D2 میشود، در این هنگام ولتاژ در دو سر سیمپیچ فاز -Vdc
خواهد شد. ﲞشی از انرژی به منبع بازگشته و ﲞشی دیگر از آن
به انرژی مکانیکی تبدیل خواهد شد به این ترتیب جریان فاز به
سرعت به صفر میرسد. تریستور S2 مانع از گردش جریان فاز A از طریق فاز C میشود.

شکل(-d٢-٢) : استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل
نامتقارن
٣٩
٢-٣- مبدﳍای یک سوئیچ در هر فاز
مبدﳍای یک سوئیچ در هر فاز بهخاطر آوچک بودن ابعاد مبدل و ﳘچنین آاهش قیمت ساخت آا جذاب هستند این مبدﳍا دارای اشکال عدم توانایی اعمال ولتاژ صفر در دو سر سیمپیچ هستند، این ﳏدودیت سبب افزایش مبادله انرژی بین ماشین و منبع ولتاژ dc
میشود آه خود موجب تلفات بیشﱰ و آاهش بازده میشود ﳘچنین نویز صوتی افزایش مییابد.[35]
٢-۴- مبدل R-Dump
شکل (۴-٢) یک مبدل با یک سوئیچ و یک دیود در هر فاز را
نشان میدهد، وقتی T1 خاموش میشود جریان آزادانه از طریق
دیود D2 عبور میآند و خازن CS را شارژ میآند پس از مقاومت
خارجی R عبور میآند. این مقاومت مقداری از انرژی ذخیره شده
در فاز A را مصرف میآند آه باعث مشکل دیر ﲣلیه شدن سیمپیچ
میشود. علاوه براین اتلاف انرژی در مقاومت باعث آاهش بازده
میشود. ولتاژ بر روی T1 در هنگامیآه خاموش میشود برابر Vdc +
IaR میباشد. مقدار R هم میزان تلفات را تعیین میآند هم میزان ولتاژ حداآثر را آه ترانزیستور باید ﲢمل آند. اگر R آوچک باشد جریان فاز دیرتر خاموش شده و ﳑکن است در ناحیهای آه اندوآتانس دارای شیب منفی است سیمپیچ ﳘچنان جریان داشته و هنوز ﲣلیه نشده باشد. این امر سبب ایجاد گشتاور منفی و آاهش گشتاور موتوری میشود. اگر R بزرگ باشد آنگاه افت ولتاژ روی ترانزیستورها بزرگ بوده و ترانزیستوری آه ﲢمل ولتاژ بالاتری داشته باشد نیاز است.[18]
۴٠

شکل(۴-٢) : (a) توپولوژی R-Dump
(b) شکل موجهای توپولوژی R-Dump
٢-۵- مبدل Bifilar
در شکل (۵-٢) یک مبدل با یک ترانزیستور فاز دیده میشود اما انرژی ذخیره شده در برمیگردد. اینآار با استفاده از یک سیمپیچ

ویک دیود در هر فاز به منبع dc bifilar (دو رشتهای)
۴١
با پلاریته نشان داده شده در شکل امکانپذیر میباشد. وقتی ترانزیستور T1 خاموش میشود emf القا شده در سیمپیچ دارای
پلاریتهای است آه دیود D1 را روشن میآند. این باعث ﲣلیه
جریان از طریق D1 میشود و انرژی به منبع باز میگردد.
هنگامیآه ترانزیستور خاموش میشود ولتاژ بر روی سیمپیچ bifilar
ثانویه برابر ولتاژ منبع dc میباشد ولتاژ بر روی سیمپیچ
اصلی بستگی به نسبت دور سیمپیچها دارد. با در نظر گرفﱳ نسبت دور a بین سیمپیچ اصلی سری با ترانزیستور و سیمپیچ bifilar
ثانویه، ولتاژ بر روی ترانزیستور برابر خواهد بود با:
vT1 = vdc + avdc = (1+a) vdc
این نشان میدهد آه ولتاژ بر روی T1 میتواند خیلی بزرگﱰ از ولتاژ منبع باشد. ﳘچنین نیاز به یک سیمپیچ ثانویه باعث ایجاد ﳏدودیت در فضای سیمبندی برای سیمپیچ اصلی شده و اقتصادی ﳕیباشد.[19]

شکل(-a۵-٢) : مبدل Bifilar
۴٢

شکل -b)۵-٢) : شکل موجهای مبدل Bifilar
٢-۶- مبدل با منبع تغذیه dc دو نیمهای
مبدل با منبع تغذیه dc دو نیمهای برای هر فاز یک سوئیچ
داشته و به این صورت آار میآند آه فاز A با روشن شدن T1
ﲢریک میشود. جریان در ترانزیستور T1، فاز A و خازن C1
برقرار میشود. وقتی ترانزیستور T1 خاموش میشود جریان با
حرآت از مسیر فاز A و خازن C2 و دیود D2 ادامه مییابد. در
این عمل خازن C2 شارژ شده و بنابراین انرژی ذخیره در فاز A
بهسرعت ﲣلیه میشود مشابه این عمل برای فاز B اتفاق میافتد،
۴٣
است و 0.5 vdc
عملکرد این مدار برای فاز A در شکل -b)۶-٢) نشان داده شده
است. وقتی T1 روشن است ولتاژ در دو سر فاز A برابر vdc 2
خواهد بود و وقتی T1 خاموش میشود ولتاژ دو سرفاز A برابر
−vdc 2 خواهد شد.[24] ولتاژ بر روی ترانزیستور T1 وقتی آه روشن
است قابل صرفنظر میباشد و وقتی خاموش میشود برابرvdc
وقتی آه جریان سیمپیچ به صفر میرسد ولتاژ T1 برابر
خواهد شد. برخی از اشکالات این درایو این است آه فقط نصف
ولتاژ تغذیه برای ﲢریک فاز استفاده میشود. برای تعادل بار
بر روی خازای تغذیه باید تعداد فازهای ماشین زوج باشد.
شکل(-a۶-٢) : مبدل، منبع تغذیه dc دو نیمهای
۴۴

شکل(-b ۶-٢) : شکل موجهای مبدل با منبع تغذیه دو نیمهای
٢-٧- مبدل با q ترانزیستور و 2q دیود
در شکل -a)٧-٢) یک مبدل با یک سوئیچ در هر فاز نشان داده شده است، توجه آنید آه دیودهای هرزگرد D1 و D2 و D3 و D4
دیودهای سریع هستند و دیودهایD5 و D6 و D7 و D8 دیودهای با سرعت روشن شدن پایین هستند. با روشن شدن ترانزیستورهای T1 و
T4 فاز A ﲢریک میشود وقتی جریان به میزان تعیین شده رسید ترانزیستورهای T1 و T2 خاموش میشوند. این آار سبب روشن شدن دیودهای D1 و D4 شده تا جریان را برقرار سازند، در این حین ولتاژ بر روی فاز A برابر -vdc خواهد شد آه نشان دهنده
۴۵
انتقال انرژی از سیمپیچ به منبع ولتاژ DC میباشد. ﳘانطور آه در شکل -b)٧-٢) دیده میشود این آار سبب صفر شدن سریع جریان
فاز A میشود (روش اول) در روش دوم آه سوئیچها ﳘزمان خاموش
ﳕیشوند. در این حالت T4 روشن بوده و T1 خاموش میشود و برای
سیکل بعدی T1 روشن بوده و T4 خاموش میشود تا جریان rms
سوئیچها آاهش یابد. این عملکرد در شکل -c)٧-٢) نشان داده
شده است برای ﲢریک فاز B باید ترانزیستورهای T1 و T2 با هم عمل آنند.[27]

شکل(-a٧-٢) : مبدل با q ترانزیستور و 2q دیود
۴۶

شکل(-b٧-٢) : شکل موجهای مدار فوق با روش اول
۴٧

شکل(-c٧-٢) : شکل موجهای مدار فوق با روش دوم
٢-٨- مبدل با (١(q+ سوئیچ و دیود
یک آرایش (١(q+ سوئیچ در شکل (١-٨-٢) نشان داده شده است، برای اینکه فاز A ﲢریک شود، T1 و T2 باید روشن شوند آه باعث اعمال ولتاژ منبع به دو سر سیم پیچ میشود. وقتی جریان ia به حد تعیین شده میرسد یک روش این است آه T1 یا T2 خاموش شوند، در این صورت جریان از طریق T1 و D2 یا T2 و D1 برقرار شده و ولتاژ در دو سر فاز صفر میشود، روش دیگر این است آه T1 و T2
ﳘزمان خاموش بشوند و ولتاژ دو سر سیمپیچ -vdc شود و جریان آاهش یابد، برای خاموش آردن فاز A و آاهش سریع جریان در آن
۴٨
روش دوم انتخاب میشود. بطور مشابه برای فاز B،
ترانزیستورهای T2و T3 و دیودهای D2 و D3 استفاده میشوند و برای فاز C ترانزیستورهای T3 و T4 و دیودهای D3 و D4 استفاده
میشوند، ترانزیستورهای T2 و T3 و دیودهای D2و D3 بهصورت مشﱰ
ک استفاده میشوند این امر نهتنها باعث افزایش جریان عبوری
از آا میشود بلکه در آنﱰل مستقل فازها نیز ﳏدودیت ایجاد
میآند. بهعنوان مثال اجازه دهید فاز A خاموش شده و فاز B
ﲢریک شود، در این حال T1 باید خاموش شود و T2 و T3 روشن شوند، این امر سبب میشود آه ولتاژ روی فاز A صفر شود، در صورتی آه مطلوب ما -vdc میباشد. این امر سبب دیرتر خاموش شدن فاز A
شده و حتی ﳑکن است باعث ایجاد گشتاور منفی و آاهش گشتاور موتوری شود.[21]

شکل (١-٨-٢) : مبدل با (١(q+ سوئیچ در هر فاز
ﲠبود یافته مدار فوق با دیودهای اضافه و q
شکل (٢-٨-٢) نشان داده شده است. این مدار میباشد، نیمی از آا (دیودهای Da و Db و Dc

ترانزیستور در دارای 2q دیود و (Dd جریان را
۴٩
به فاز مناسب هدایت میآنند و بنابراین میتوانند دیودهای با سرعت آم باشند. فقط ماشینهایی با تعداد فاز زوج میتوانند از فواید این درایو ﲠرهمند شوند. [25]

شکل(٢-٨-٢) : ﲠبود یافته مدار(١(q+ ترانزیستوری
٢-٩- مبدل C-Dump مبدل C-Dump با مدار بازیافت انرژی در شکل (٩-٢) نشان
داده شده است. ﲞشی از انرژی مغاطیسی ذخیره شده در فاز به
خازن Cd منتقل شده و از آن از طریق Tr و Lr و Dr بازیابی شده
به منبع ولتاژ DC ورودی منتقل میشود. فرض آنید آه
ترانزیستور T1 روشن شود تا فاز A ﲢریک گردد و هنگامیآه
جریان فاز A به میزان تعیین شده میرسد، T1 خاموش میشود،
اینآار باعث روشن شدن دیود D1 میشود و جریان از طریق خازن
Cd بسته میشود آه باعث افزایش ولتاژ روی آن میشود. در نتیجه جریان فاز A آاهش مییابد، وقتی آه جریان به اندازه ∆i از
میزان تعیین شده آمﱰ شد، T1 روشن میشود تا جریان به مقدار
تعیین شده نزدیک شود. وقتیآه جریان باید آاملا در فاز A
۵٠
خاموش شود، T1 خاموش میشود و مقداری از انرژی ذخیره شده در فاز A در خازن Cd ذخیره میشود و ﲞشی از آن به انرژی مکانیکی
تبدیل میشود. این مبدل حداقل تعداد سوئیچ را داشته و ﳘچنین
جریان در آن بطور مستقل از فازهای دیگر آنﱰل میشود. اشکال
اصلی این مبدل این است آه سرعت خاموش شدن فاز به اختلاف
ولتاژ تغذیه ورودی، vdc، و ولتاژ vo روی Cd بستگی دارد، سریعﱰ خاموش شدن جریان نیازمند vo بزرگﱰ است آه باعث افزایش میزان ولتاژی خواهد شد آه ادوات قدرت باید ﲢمل آنند. ﳘچنین تبادل انرژی بین Cd و منبع تغذیه dc ورودی باعث تلفات اضافی شده و بازده ماشین را پایین میآورد. مدار باز یافت انرژی فقط هنگامیعمل میآند آه یکی از ترانزیستورهای T1، T2 ، T3 یا T4
روشن باشند تا از جریان هرز گرد فازها جلوگیری شود. Tr
زمانیآه ترانزیستورهای T1 تا T4 ﳘگی خاموش هستند خاموش می شود.[2]

۵١

شکل(٩-٢) : (a) مدار مبدل C-Dump
(b) شکل موجهای مبدل C-Dump
٢-١٠- مبدل C-Dump با قابلیت جریان هرزگرد
مبدل SRM به روش C-Dump توانایی ایجاد ولتاژ صفر ولت را
بر روی فازها نداشت، این امر سبب افزایش نویز صوتی در این
موتورها میشود. ﳘچنین فازهای ماشین هم با ولتاژ منبع dc و
هم با اختلاف ولتاژ بین منبع dc و خازن C-dump مواجه میشدند یعنی یک ولتاژ با تغییرات بسیار زیاد، تقریباً دو برابر ولتاژ منبع dc، این موضع باعث تلفات بیشﱰ میشود، ﳘه این مسائل با اضافه آردن یک ترانزیستور و ایجاد جریان هرزگرد به ﳘراه دیود DS برای بازیافت انرژی ذخیره شده در خازن C-Dump
۵٢
برطرف می شوند. شکل (١-١٠-٢) در این آرایش Lr حذف شده است.
برای ﲢریک فاز A، ترانزیستور T1 روشن می شود. مرحله ١، وقتی جریان فاز به میزان تعیین شده میرسد T1 خاموش شده و Tf روشن میشود، مرحله ٢، زمانی شروع میشود آه ولتاژ Cd به ولتاژ منبع dc میرسد، در این هنگام Tf روشن شده و جریان در فاز
ترانزیستور Tf و دیود D1 برقرار میشود (در این هنگام ولتاژ
دو سر سیمپیچ صفر است). وقتی جریان فاز باید خاموش شود T1
خاموش شده و Tf روشن ﳕیشود، در نتیجه ﲞشی از انرژی به خازن
Cd منتقل میشود و ﲞشی دیگر به انرژی مکانیکی تبدیل میشود، این مرحله ٣ است، و در این مرحله ولتاژ دو سر فاز ماشین برابر (vd-vo) خواهد شد.
مرحله ۴ زمانی آغاز میشود آه فاز آاملا خاموش شده است و انرژی داخل Cd میتواند برای ﲢریک فاز B یا فاز C استفاده شود، در این مرحله دیود DS خاموش شده و اجازه میدهد آه ولتاژ Cd به فاز دارای جریان منتقل شود در ﲤامی این مراحل آنﱰل مستقل جریان فازها امکانپذیر میباشد. فقط هنگامیآه جریان فازها با هم ﳘپوشانی دارند روشن آردن Tf باعث دیرتر خاموش شدن فاز درحال خاموش شدن خواهد شد. شکل موج عملکرد مدار بدون ﳘپوشانی جریان فازها در شکل (٢-١٠-٢) نشان داده شده است.[34]
۵٣

شکل (١-١٠-٢) : مبدل C-Dump با قابلیت جریان هرزگرد

شکل (٢-١٠-٢) : عملکرد مدار بدون ﳘپوشانی جریان فازها
۵۴
٢-١١- مبدل با یک ترانزیستور مشﱰک
شکل (١١-٢) یک مبدل با یک ترانزیستور مشﱰک برای فازها را نشان میدهد، T1 قسمت بالای فازها را از منبع dc جدا میآند تا انرژی بتواند به خازن C1 منتقل شود، در غیر اینصورت جریان بهصورت هرزگرد در داخل فاز و دیود جاری خواهد شد، وقتی ﲞواهیم فاز A ﲢریک شود، ترانزیستورهای T1 و T3 روشن میشوند، هنگامیآه جریان به میزان تعیین شده رسید ترانزیستور T1 و T2
ﳘزمان یا به تنهایی خاموش خواهند شد. اشکال این مبدل عدم توانایی آنﱰل جریان بهصورت مستقل در هنگامیآه جریاا با هم ﳘپوشانی دارند میباشد، هنگامیآه فاز A در حال خاموش شدن است اگر فاز B یا C روشن شود جریان در فاز A بهصورت هرزگرد خواهد شد و ﲣلیه آن طولانیتر میشود.[39]

شکل (١١-٢) : (a) مبدل با یک ترانزیستور مشﱰک
(b) عملکرد مدار
۵۵
٢-١٢- مبدل با حداقل تعداد سوئیچ و تغذیه ورودی متغیر
دو ﳕونه مبدل با (١(q+ ترانزیستور بررسی شدند، با وجود
ﳏدودیتهایی آه داشتند بهخاطر سادگی توپولوژی و خصوصیات
آنﱰلی جالب از آا استفاده میشود. این نوع مبدﳍا ﳘان ولتاژ منبع را به ادوات نیمه هادی اعمال میآنند اما توانایی آنﱰل جریان فازها را هنگامیآه جریاا با هم ﳘپوشانی دارند (وقتی یک فاز در حال خاموش شدن است فاز دیگر ﲞواهد روشن شود)
ندارند. نوع C-dump مشکل آنﱰل جریان بهصورت مستقل را حل
آرده اما ادوات نیمههادی باید ولتاژ بزرگﱰی را ﲢمل آنند،
ﳘچنین در مبدل C-dump گردش انرژی بیشﱰ است و تلفات بالاتر
میباشد. اشکالات فوق استفاده از این مبدﳍا را در عمل ﳏدود آرده است.
مبدل نشان داده شده در شکل (١٢-٢) با ﳘان تعداد ترانزیستور دیگر مشکل آنﱰل مستقل جریان فازها را ندارد.
ترانزیستور TC، دیود DC، سلف LC و خازن CC مدار آاهنده ولتاژ
DC ورودی را تشکیل میدهند. این مدار ولتاژ vdc ورودی را به vi
آاهش میدهد تا اینکه ولتاژ مورد نظر به سیمپیچ ماشین اعمل شود. با آاهش ولتاژ vi دیگر نیاز به سوئیچینگ ترانزیستورهای قدرت فازها ﳕیباشد و فقط یک بار برای اعمال ولتاژ به فاز روشن شده و یک بار هم برای خاموش شدن جریان، خاموش میشوند.
در نتیجه تلفات ناشی از سوئیچینگ ترانزیستورهای فازها و تلفات هسته به حداقل میرسد. ﳘچنین این مبدل خاموش شدن سریع فازها را درحالیآه حداآثر ولتاژ روی ادوات نیمههادی برابر ولتاژ DC تغذیه است فراهم میآند، درست برخلاف مبدل [28]C-dump
.
۵۶

شکل (١٢-٢) : مبدل با حداقل تعداد ترانزیستور و تغذیه ورودی متغیر
٢-١٣- مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost
در شکل(١٣-٢) یک مبدل با ولتاژ DC ورودی متغیر و با چهار عدد ترانزیستور و دیود نشان داده شده است. به ازای هر فاز ماشین فقط یک عدد ترانزیستور وجود دارد، این ترانزیستور با سیمپیچ فاز بصورت سری قرار گرفته و از خطای shoot-through
جلوگیری میآند. ترانزیستور TC، دیود DC، سلفL و خازن خروجی
C طبقه خروجی مبدل Buck-Boost را تشکیل میدهند. ولتاژ DC
ورودی به ماشین، Vi، میتواند از صفر تا دو برابر ولتاژvdc
تغییر آند تا ولتاژ مورد نظر را به سیمپیچهای ماشین اعمال
آند. بنابراین خاموش شدن سریع فازها با ولتاژ vdc ثابت امکانپذیر است، با روشن شدن ترانزیستور v1 ولتاژ vi به فاز A
اعمال شده و باعث ﲢریک این فاز میشود. وقتی T1 خاموش میشود صرفنظر از خاموش یا روشن بودن ترانزیستور TC، جریان از مسیر
D1 و منبع ولتاژ vdc و سیمپیچ فاز A جاری میشود، انرژی
ذخیره شده در خازن C در زمانی آه ترانزیستور TC خاموش است
میتواند به فازی آه قرار است روشن شود انتقال یابد، به ﳘین
۵٧
دلیل آنﱰل مستقل فازها در این توپولوژی امکانپذیر است.
برتری این مبدل نسبت به مبدلی آه طبقه خروجی آن بصورت Buck
آار میآند این است آه ولتاژ خروجی آه به فازها اعمال میشود میتواند بیشﱰ از vdc شود تا افزایش جریان در سیمپیچ در حال
روشن شدن سریعﱰ صورت پذیرد، این برتریها در این مدار مبدل
بهﳘراه افزایش ولتاژی است آه سوئیچ مدار مبدل ولتاژ باید
ﲢمل آند، این ولتاژ برابر ولتاژ dc ورودی به اضافه ولتاژ
خروجی مدار مبدل dc به dc میباشد و با فرض اینکه ولتاژ خروجی مبدل dc به dc دو برابر ولتاژ dc ورودی است. ولتاژی آه این ترانزیستور باید ﲢمل آند سه برابر ولتاژ dc ورودی میباشد، حتی برای حالتی آه ولتاژ خروجی مدار مبدل آوچکﱰ از ولتاژ ورودی است، میزان ولتاژی آه این ترانزیستور باید ﲢمل آند نسبت به مبدل Buck بیشﱰ میباشد.[39]

شکل (١٣-٢) : مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost
۵٨
٢-۴١- مبدل با (1. 5 q) سوئیچ و دیود
این مبدل در شکل (١۴-٢) نشان داده شده، آه آمﱰ از دو
سوئیچ برای هر فاز نیاز دارد و به ازای دو فاز سه عدد سوئیچ دارد، علاوه بر این در صورتی آه تعداد فازهای ماشین زوج باشد و بصورت غیرمتوالی در یک گروه قرار گرفته باشند امکان آنﱰل مستقل جریان فازها وجود دارد. در این مبدل سوئیچهای T5 و T6
هریک باید جریان دو فاز را از خود عبور بدهند بنابراین
میزان جریانی آه باید ﲢمل آنند نسبت به ترانزیستورهای T1 و
T2 و T3 و T4 بیشﱰ است، شکل موجهای مربوط به این مبدل در
هنگام آار در شکل -b)١۴-٢) نشان داده شده.[39]

شکل (١۴-٢) : (a) مبدل با (1.5q) سوئیچ
(b) عملکرد مدار
۵٩
٢-۵١- مبدل دو مرحلهای
آرایشی آه توانایی انتقال انرژی را بهصورت مستقیم از
سیمپیچهای فاز به منبع ولتاژ ac داشته باشد در شکل (١۵-٢)
نشان داده شده آه دو مرحله تبدیل ولتاژ در آن صورت میگیرد،
طبقه اول شامل یک مبدل آنﱰل شونده با شش عدد ترانزیستور و
شش عدد دیود است آه ورودی سه فاز 60 HZ را به خروجی ac تکفاز
و با فرآانس متغیر ارتباط میدهد، طبقه بعدی یک طبقه قدرت
بوده آه به وسیله آن هر فاز ﲢریک میشود بیشﱰ مدارات
راهانداز موتور رلوآتانس سوئیچ شونده به جز آا آه تغذیه
ورودیشان را باطری تشکیل میدهد ﳕیتوانند انرژی را مستقیماً
از ماشین به منبع ورودی منتقل آنند، این امر بهخاطر وجود یکسوسازهای دیودی و ﳏدودیت جریانی در خازای الکﱰولیتی میباشد. بنابراین فقط ﲞش آوچکی از انرژی به خازن برگشته و دوباره استفاده میشود. در نتیجه یک مقاومت باید موازی خازن واقع شود تا مانع از افزایش ولتاژ dc در آن شود، آه این خود باعث آاهش بازده میشود، در این موارد شارژ و دشارژ متناوب خازن باعث آاهش عمر آن میشود، مبدل مطرح در این قسمت فاقد خازن بوده و میتواند انرژی را مستقیماً از ماشین به منبع منتقل آند. اشکال این مبدل این است آه تعداد ترانزیستورها و دیودها در آن زیاد است و هزینه ساخت آن نسبت به سایر مبدﳍا بیشﱰ میباشد. و درجاهایی آه انرژی بازیافتی مورد توجه نباشد اقتصادی نیست. آاربردی آه میتواند مناسب باشد آنﱰل متغیر سرعت و تولید فرآانس ثابت از انرژی باد است.[22]
۶٠

شکل (١۵-٢) : مبدل دو مرحلهای
۶١
فصل سوم:
طراحی مدار راهانداز (DRIVER)
به روش مستقیم
۶٢
٣-١- مقدمه
موتورهای رلوآتانس به یک مدار راهانداز برای چرخش نیاز دارند. مدار راهانداز بستگی به مورد استفاده میتواند، بسیار ساده باشد. در عین حال آنﱰل سرعت موتور در یک حلقه بسته، حذف سنسورهای تعیین موقعیت روتور، آاهش ریپل گشتاور و ...
میتوانند بر پیچیدگی، حجم و قسمت مدار طراحی شده تأثیر بگذارند.
شکل (١-٣)، بلوک دیاگرام مدار آنﱰل یک موتور رلوآتانس را نشان میدهد.

شکل (١-٣) : بلوک دیاگرام مدار آنﱰل موتور
۶٣
٣-٢- سوئیچ و اﳌاای قدرت
روش متداول برای سوئیچ آردن سیمپیچهای موتور رلوآتانس استفاده از دو سوئیچ برای هر فاز میباشد و چون موتور طراحی شده سه فاز میباشد، ﲨعاً ۶ سوئیچ ترانزیستوری مورد نیاز میباشد. شکل (١-٢-٣) مدارد ساده هر فاز را مشان میدهد.
هنگامی آه سوئیچها روشن باشند ولتاژ تغذیه بر روی سیمپیچ فاز موجب عبور جریان از آن میشود. پس از خاموش شدن سوئیچها جریان سیمپیچ از طریق دیودها عبور میﳕاید و این جریان پس از مدت زمانی آه بستگی به L و R سیم پیچ دارد به ﲰت صفر میل میآند و سپس دیودها نیز خاموش میشوند.

شکل (١-٢-٣) : مدار ساده هر فاز
دیودها از نوع سریع میباشند. ترانزیستورهای سوئیچ میتوانند MOSFET یا IGBT باشند آهIGBT دارای خازن ورودی
آمﱰی است، در عین حال حداآثر ولتاژ شکست آا بالاتر از
MOSFET ها میباشند. افت ولتاژ بر روی IGBT برابر VCesat میباشد آه در حد 1.5 تا 2.5 ولت است در حالیکه افت ولتاژ بر روی MOSFET وابستگی به مقاومت درین وسورس دارد آه این مقاومت نیز وابستگی شدیدی به حرارت دارد. مدار ﲢریک گیت
۶۴
برای ترانزیستورهای MOSFET و IGBT یکسان میباشد. بنابراین میتوان این مدار را برای هر دو بکار برد.
با توجه به اینکه بیشﱰین تلفات در مدارهای سوئیچینگ در زمان روشن و خاموش شدن سوئیچ صورت میگیرد، بایستی زمان روشن و خاموش شدن ترانزیستورها را به حداقل رساند. از آﳒایی آه
ورودی این ترانزیستورها دارای یک خازن است، برای شارژ آردن
و دشارژ آردن آن نیاز به یک منبع با امپدانس خروجی آم
میباشد، برای این منظور از ترآیب دو ترانزیستور npn و pnp
استفاده میشود آه یک امیﱰ فالوور دو جهته میباشد، هم جریان دهی و هم جریان آشی مناسب دارد، با توجه به β بالاتر از 100
برای این ترانزیستورها در صورتی آه جریان بیس در حد 10mA در نظر گرفته شود، جریان خروجی این ترانزیستورها 1A خواهد بود.
در این صورت زمان روشن و خاموش شدن ترانزیستورهای قدرت در این مدار آمﱰ از 500ns میباشد. شکل (٢-٢-٣) مدار درایو ترانزیستورهای قدرت را نشان میدهد.

شکل (٢-٢-٣) : مدار درایو ترانزیستورهای قدرت
۶۵
٣-٣- سنسور تعیین موقعیت و سرعت موتور برای چرخش موتورهای رلوآتانس، بایستی هر آدام از فازهای
سه گانه با ترتیب و زاویه مشخص روشن شوند، این ترتیب و
زاویه بستگی به تعداد قطبهای روتور و استاتور و ﳏل قرار
گیری آا نسبت بههم دارد. به ﳘین منظور بایستی از یک ﳎموعه سنسور برای مشخص آردن این وضعیت استفاده ﳕود. یکی از روشهای متداول، استفاده از یک پره شکافدار به ﳘراه سه عدد فتواینﱰاپﱰ (Photo Interrupter) میباشد. فتواینﱰاپﱰ قطعهای است آه در آن یک فرستنده و یک گیرنده مادون قرمز وجود دارد. شکل (١ -٣-٣) مدار معادل یک مدل از آن را نشان میدهد.

شکل (١-٣-٣) : مدار معادل فتواینﱰاپﱰ
سه عدد از این قطعات الکﱰونیکی در زاویه 30° نسبت به هم
قرار میگیرند و یک پره شکافدار آه به ﳏور روتور متصل شده
است از میان آا میگذرد. شکافهای پره شکافدار بگونهای تنظیم شده است آه ﳘواره یک شکاف در مقابل یکی از سه فتو اینﱰاپﱰ
قرار میگیرد. بنابراین ﳘواره یکی از این سه سنسور، نور را
از خود عبور میدهد و از دو سنسور دیگر نور عبور ﳕیآند،
طراحی پره شکافدار بستگی به تعداد قطب روتور دارد. شکل (٢-٣ -٣) مدار آامل سنسورها را نشان میدهد.

شکل (٢-٣-٣) : مدار آامل سنسورها
۶۶
شکل موجهای ناشی از سنسورها برای سه فاز در شکل (٣-٣-٣)
مشاهده میشود.

شکل (٣-٣-٣) : شکل موجهای ناشی از سنسورها
از پالسهای ایجاد شده برای روشن آردن ترانزیستورهای هر
فاز استفاده میشود. ترتیب فازها بگونهایست آه موتور تنها در جهت راست میچرخد. برای چرخش در جهت چپ یک ﳎموعه ٣ تائی فتواینﱰاپﱰ دیگر نصب میشود. انتخاب جهت چرخش و ﳎموعه فتواینﱰاپﱰها توسط میکروآنﱰلر صورت میگیرد.
٣-۴- آنﱰل دور و حلقه فیدبک برای آنﱰل دور موتور بایستی جریان سیمپیچها را آنﱰل ﳕود،
برای این منظور از روش PWM استفاده میشود. در این حالت هر
آدام از پالسهای خروجی از فتواینﱰاپﱰها با یک موج پالسی
PWM آمیخته میشود و بدینترتیب زمان عبور جریان از یک
سیمپیچ و در نتیجه میزان جریان آن آنﱰل میگردد. هر چه نای
روشن ]یا یک بودنPWM [ بیشﱰ باشد جریان عبوری بیشﱰ است و
در نتیجه دور و گشتاور موتور بیشﱰ میشود. شکل (١-۴-٣) سه
شکل موج را نشان میدهد، اولی پالسهای سنسور موقعیت، دومی پالسهای PWM میباشد. سومین شکل موج در نتیجه AND آردن آن دو پالس میباشد آه به ترانزیستورهای یکی از فازها اعمال میگردد.
۶٧

شکل (١-۴-٣) : پالسهای PWM
فرآانس پالسهای ,PWM ثابت است و تغییرات نای پالس میتواند در یک حلقه فیدبک آنﱰل شود تا سرعت موتور ﳘواره با تغییر بار ثابت ﲟاند.[1] سرعت موتور از روی تعداد پالسهای موقعیت در ثانیه اندازهگیری میشود، برای این آار از مدار شکل (٢-۴-٣) استفاده میشود.

شکل (٢-۴-٣) : مدار سرعت موتور
ولتاژ VP متناسب با سرعت موتور است، مقاومتهای R1 و R2 و
مقدار خازن C بستگی به میزان تغییرات سرعت و مقدار سرعت و تعداد پالسهای فازها در ثانیه دارد. بدیهی است هرچه سرعت بالاتر باشد، تعداد پالسهای فازها در ثانیه بیشﱰ است و مقدار
R1 و R2 و C آوچکﱰ میشود. برای آنﱰل PI روی موتور از آنﱰل
۶٨
آننده شکل ٣-۴-٣ استفاده میشود. VP ولتاژ متناظر با سرعت میباشد و Vref ولتاژ مرجع متناسب با سرعت مرجع میباشد. Ve
ولتاژ خطا متناسب با اختلاف دو سرعت است.[29]

شکل (٣-۴-٣) : مدار آنﱰل PI برای پالسهای PWM از TL494 استفاده میشود. این IC دارای
یک مولد PWM است آه نای پالسهای آن توسط چند ورودی قابل
آنﱰل میباشد. شکل (۴-۴-٣) قسمتهای ﳐتلف این IC را نشان
میدهد. توسط پایههای ١ و ٢ و ١۵ و ١۶ و از طریق دو op-amp
داخلی میتوان ولتاژی را در پایه ٣ ایجاد آرد آه سطح این ولتاژ بین 0 تا ٣.٣ ولت تغییر میآند و تغییرات آن موجب تغییر
در نای پالس خروجی میگردد. op-amp، را میتوان در حلقه بسته و یا بهعنوان مقایسه آننده بکار برد. مدار حلقه فیدبک شکل ۴
-١٠ با استفاده از پایههای ١ و ٢ و یکی از op-amp ساخته میشود. از op-amp دوم برای ﳏدد آردن جریان موتور استفاده میشود. هنگامی آه جریان موتور از یک حد مشخص مثلا ١٠ آمپر بیشﱰ شود، ولتاژ در پایه ١۶ بیشﱰ از ولتاژ پایه ١۵ میشود و
۶٩
ولتاژ پایه ٣ تغییر می آند. بطوریکه موجب بسته شدن PWM در خروجی میگردد و بدینترتیب جریان ﳏدود میگردد.[26]

شکل (۴-۴-٣) : IC-TL494
پایه ۴ این IC برای Soft Start میباشد، اگر این پایه به آرامی
از ولتاژ +5v به ﲰت 0 ولت برسد. PWM نیز با ﳘان سرعت از %0
به %100 میرسد. از این پایه در زمان روشن آردن موتور در
ابتدای آار استفاده میشود.
٧٠
فصل چهارم:
روش های عملی کاهش
ریپل گشتاور
٧١
۴-١- بدست آوردن رابطه گشتاور از مدار معادل : SRM
با توجه به شکل (١-۴) ولتاژ اعمال شده به یک فاز برابر است با ﳎموع افت ولتاژ مقاومتی و میران شار پیوندی که با رابطه زیر داده می شود.
V R s i  d (dtNφ)

Nφ  L(θ,i)i

شکل (١-۴) : مدار معادل موتور رلوآتانسی
در این رابطه، L اندوکتانس بوده که تابعی از جریان سیم پیچ وموقعیت روتور می باشد
dL(θ,i) i di RsiL(θ,i) d{L(θ,i) i} V R s i  dt dt dt توان ورودی با رابطه زیر داده می شود :
pi Vi  Rs i 2 i 2 dL(dtθ,i)  L(θ,i)i dtdi

و می توان نوشت :
dL(θ,i) i 2 1  di L(θ,i)i2 )  L(θ,i)i 1 ) d 2 2 dt dt dt با استفاده از رابطه اخیر در رابطه pi خواهیم داشت :
٧٢
dL(θ,i) i 2 1 ,i)i 2 )  L(θ 1 ) d pi  Rs i 2  2 dt dt 2 رابطه فوق نشان می دهد که توان ورودی برابر است با ﳎموع تلفات مقاومتی که با Rsi2 داده می شود و انرژی ذخیره شده در داخل سیم پیچ که با رابطه 12 L(θ,i)i2 داده می شود ونیز توان فاصله هوایی , Pa که با رابطه زیر داده می شود :
dθ dL(θ,i) i 2 1  dL(θ,i) i2 1 P  dt dθ 2 dt 2 a wm  ddtθ

Pa  1 i2 dL(θθ,i) wm 2 d

توان فاصله هوایی، حاصلضرب گشتاور الکﱰو مغناطیسی و سرعت روتور می باشد که با رابطه زیر داده می شود
Pa  wmTe
با توجه به دو رابطه اخیر، گشتاور الکﱰومغناطیسی بدست خواهد آمد
dL(θ,i) i2 1  T dθ 2 e در رابطه فوق، dL(θ,i) ثابت گشتاور نامیده می شود و به خاطر dθ رابطه ای که اندوکتانس، L ،با موقعیت روتور و جریان سیم پیچ دارد ، یک کمیت غیر خطی می باشد.
۴-٢- بررسی رابطه L با موقعیت روتور : θ

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

با توجه به شکل (١-٢-۴) در مکان هایی که روتور واستاتور کاملا ﳘراستا هستند، ( (θ2 −θ3 و مکان هایی که روتور و استاتور کاملا غیر ﳘراستا هستند، ( (0 −θ1 و ( (θ4 −θ5 تغییر در اندوکتانس
٧٣
ﳔواهیم داشت. یعنی dL(θ,i) صفر می باشد، در نتیجه گشتاور در dθ
این نقاط صفر خواهد شد، حتی اگر سیم پیچ دارای جریان باشد.

شکل (١-٢-۴) : تغییرات اندوکتانس با موقعیت روتور
راه حل مساله فوق تغییر شکل مکانیکی روتور به ﳓوی است که در شکل (٢-٢-۴) نشان داده شده است. با این کار هیچ گاه اندوکتانس هنگام چرخش روتور مقداری ثابت ﳔواهد داشت، در نتیجه گشتاور صفر ﳔواهد شد.
٧۴

شکل (٢-٢-۴) : پایین شکل، روتور اصلاح شده
در مقایسه با روتور معمولی
۴-٣- بررسی تاثیر جریان بر : L
در جریاای که هسته موتور هنوز اشباع تغریبا شبیه ﳕودار (٣-۴) است. افزایش رفﱳ هسته موتور می شود، این امر در استاتور ﳘراستا هستند به خاطر کاهش gap

نشده، رابطه L و θ جریان سبب به اشباع جاهایی که روتور و مشهودتر است. با به
اشباع رفﱳ هسته، dθdL کاهش می یابد و این امر سبب افت گشتاور می شود.[36]

٧۵

شکل (٣-۴) : تغییرات اندوکتانس با جریان بر حسب زاویه
راه حل مساله فوق کنﱰل جریان می باشد، به این ترتیب که قبل از ﳘراستا شدن روتور و استاتور هنگامی که dθdL در حال کاهش است جریان را افزایش می دهیم تا کاهش L جﱪان شود. افزایش

٧۶
جریان نیز به این صورت اﳒام می شود که فرمان فاز جدید با فرمان فاز قبلی بایدکمی ﳘپوشانی داشته باشد.
۴-۴- اثر ثابت گشتاور dL(θ,i) بر روی گشتاور :

اگر زمانی که dθdL برای یک فار کمیتی مثبت است به آن فاز فرمان داده شود، باعث ایجاد گشتاور در جهت مورد نظر می شود.

ولی هنگامی که dθdL منفی است اگر فاز ذکر شده دارای جریان

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *